博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
uva 10004 - Bicoloring
阅读量:5323 次
发布时间:2019-06-14

本文共 2744 字,大约阅读时间需要 9 分钟。

 

   

In 1976 the ``Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.

Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:

 

  • no node will have an edge to itself.
  • the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.
  • the graph will be strongly connected. That is, there will be at least one path from any node to any other node.

 

Input 

The input consists of several test cases. Each test case starts with a line containing the number n ( 1 < n < 200) of different nodes. The second line contains the number of edges l. After this, l lines will follow, each containing two numbers that specify an edge between the two nodes that they represent. A node in the graph will be labeled using a number a ( $0 \le a < n$).

An input with n = 0 will mark the end of the input and is not to be processed.

 

Output 

You have to decide whether the input graph can be bicolored or not, and print it as shown below.

 

Sample Input 

330 11 22 0980 10 20 30 40 50 60 70 80

 

Sample Output 

NOT BICOLORABLE.BICOLORABLE.
#include 
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;#define ms(arr, val) memset(arr, val, sizeof(arr))#define mc(dest, src) memcpy(dest, src, sizeof(src))#define N 205#define INF 0x3fffffff#define vint vector
#define setint set
#define mint map
#define lint list
#define sch stack
#define qch queue
#define sint stack
#define qint queue
int cnt, ans, front[N];int tag[N];struct node{ int next, to;}edge[40005];void addedge(int s, int e){ edge[cnt].next = front[s]; front[s] = cnt; edge[cnt++].to = e;}void dfs(int i){ for (int s = front[i]; s != -1; s = edge[s].next) { if (tag[edge[s].to]) { if (tag[edge[s].to] == tag[i]) { ans = 0; return; } } else { tag[edge[s].to] = -tag[i]; dfs(edge[s].to); } }}int main(){ //freopen("1.cpp", "r", stdin); int n, l, s, e; while (scanf("%d", &n), n) { scanf("%d", &l); ms(front, -1); ms(tag, 0); ans = tag[0] = 1; cnt = 0; while (l--) { scanf("%d%d", &s, &e); addedge(s, e); addedge(e, s); } dfs(0); puts((ans ? "BICOLORABLE." : "NOT BICOLORABLE.")); } return 0;}

 

转载于:https://www.cnblogs.com/jecyhw/p/3914697.html

你可能感兴趣的文章
fatal error: error writing to /tmp/ccXIKnDg.s: No space left on device
查看>>
跨域方法:JSONP、iframe
查看>>
配置 archlinux 之安装 xfce
查看>>
数据结构与算法JavaScript描述
查看>>
每周总结③
查看>>
项目打包结构
查看>>
log4j
查看>>
linux下setsockopt函数的使用
查看>>
我的第一个python web开发框架(36)——后台菜单管理功能
查看>>
eclipse开发创建web项目
查看>>
iphone常见机型微信网页可视高度
查看>>
移动混合开发之HTML5在移动开发中的准则
查看>>
以Qemu模拟Linux,学习Linux内核
查看>>
Hadoop 综合大作业
查看>>
hexo安装
查看>>
python日期及时间格式转换
查看>>
MSP与PSP
查看>>
Android 使用RecyclerView SnapHelper详解
查看>>
Android开发学习:[15]自动导入包
查看>>
Struts2+JFreeChart
查看>>